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Stability properties of the vertical boundary 
layers in differentially heated cavities 
R. Janssen and S. Armfield* 
Water Research Laboratory, Department of Civil Engineering, Universi ty of New South Wales, Kensington, 
Sydney, NSW, Aust ra l ia  

In the present study, the two-dimensional (2-D) stability properties of the vertical boundary 
layers in a cavity that is differentially heated over two opposing vertical walls is considered. 
The study is performed by introducing artificial, controlled perturbations at the base of the 
vertical boundary layer along the hot cavity wall and by following the evolution of these 
disturbances. For small initial perturbations, the evolution is governed by linear effects. 
This method accurately predicts the frequency of the bifurcation, which occurs for (much) 
larger Rayleigh numbers. Convective instability sets in for Rayleigh numbers much smaller 
than those at which the absolute instability (i.e., the bifurcation) occurs, and these Rayleigh 
numbers are in reasonable agreement with those for the boundary layer along a plate. The 
absolute instability does not result from the first wave which becomes unstable. For small 
Prandtl numbers (<2), the unstable waves which lead to the absolute instability are 
shear-driven, and a single frequency is introduced in the flow after the bifurcation. For 
larger Prandtl numbers, the unstable waves are buoyancy driven and no single-frequency 
unsteady flow is observed after the bifurcation. © 1996 by Elsevier Science Inc. 
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I n t r o d u c t i o n  

A classical configuration in heat transfer research and engineer- 
ing is the differentially heated cavity in which a natural convec- 
tion flow is established inside a rectangular enclosure by differ- 
entially heating two opposing vertical walls. Apart from its many 
engineering applications, the flow in this configuration has also 
been used as a benchmark case to test and validate computer- 
codes written to solve the Navier-Stokes equations. 

Although early investigations were concerned mainly with 
steady flows, emphasis later shifted towards time-dependent 
flows. Whereas some of this work considered the transient flow 
immediately after the temperature difference between the verti- 
cal cavity walls has been imposed (Patterson and Imberger 1980; 
Armficld and Patterson 1992), most of the work regarding time- 
dependent aspects of the cavity flow has been concerned with the 
transitional instabilities arising (for sufficiently large Rayleigh 
numbers) in the large-time solution of the Navier-Stokes equa- 
tions. These instabilities indicate the beginning of the transition 
from steady, laminar to unsteady, turbulent flow. In the square 
cavity with adiabatic horizontal walls, filled with moderate Prandtl 
number fluids (0.2 _< Pr < 10), at least two different types of 
instabilities have been found, One instability occurs for the lower 
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range of Prandtl numbers (Pr ~ 2) in the horizontal fluid layers 
near those corners where the vertical boundary layers are turned 
horizontal by the adiabatic wails. Originally, this corner instabil- 
ity was, somewhat speculatively, denoted as an internal hydraulic 
jump (Ivey 1984; Paolucci and Chenoweth 1989). Later research 
(Patterson and Armfield 1990; Janssen and Henkes 1995) showed 
that it was not a hydraulic jump with Janssen and Henkes 
suggesting it was an inflexion-point Kelvin-Helmholtz-type insta- 
bility. The second instability found in the cavity, arises in the 
boundary layers along the hot and cold vertical cavity walls. 
Visualization of the oscillations which result from this instability 
shows a travelling wave-like appearance of the perturbations in 
the boundary layers and consequently, this instability has been 
compared with the instability occurring in a natural convection 
boundary layer along an isolated, semi-infinite, hot vertical plate 
(Le Qurr6 and Alziary de Roquefort 1985, 1986; Janssen and 
Henkes 1995). 

The present study investigates in detail the stability properties 
and the nature of the disturbance amplification in the vertical 
boundary layers of the differentially heated cavity. This is accom- 
plished by introducing artificial disturbances at the upstream end 
of the (hot) vertical boundary layer and by following the growth 
of these disturbances as suggested by Armfield and Janssen 
(1996). This approach closely predicts the frequency of the natu- 
rally occurring instability in the vertical boundary layers. It is 
shown that the local critical Rayleigh number, beyond which 
instabilities are amplified in the boundary layer, is several orders 
of magnitude less than the Rayleigh number at which the natu- 
rally-occurring instability is found and that it is in reasonable 
agreement with the values predicted by a linear stability analysis 
for the isolated plate. Furthermore, contrary to the assumption 
usually made (Le Qu~r6 and Alziary de Roquefort 1985, Janssen 
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and Henkes 1995), the waves which become unstable first are not 
those which lead to the bifurcation of the boundary layer in the 
cavity. Also, it is found that there is a shift for increasing Prandtl 
number from the disturbance growth being shear-driven to buoy- 
ancy-driven. 

G o v e r n i n g  e q u a t i o n s  

Flow equations 

Consider a two-dimensional (2-D) rectangular cavity with height 
H and width L and with isothermal vertical sidewalls. The left 
wall is held at a fixed temperature T h and the right wall at a fixed 
temperature T c (T h > To). The horizontal top and bottom walls 
are considered to be perfectly adiabatic. The gravitation g acts in 
the negative x2-direction (see Figure 1). 

The flow in the rectangular cavity is fully described by the 
2-D Navier-Stokes equations. Under the Boussinesq approxima- 
tion, these equations read: 

OU i 
- - = 0  
Ox i 

OU i On i 1 0 p  02Ui 

O-'7- + Uj oxy O Oxi I - g ~ ( T -  T°)Si2 + v OX--~j 

OT OT OZT 
+uj--=a~. .2  +S' 

- ~  o~xj Oxj 
(1) 

Here, the summation convention has been used: in every term, a 
summation has to be performed from 1 to 2 over repeated 
indices. In Equations (1), u i denotes the velocity component in 
the xi-direction, p is the density, p is the pressure, v is the 
kinematic viscosity, [3 is the coefficient of thermal expansion, T 
is the temperature, T O is a reference temperature, and a is the 
thermal diffusivity. The term S' is not normally part of the 
Navier-Stokes equations. In the present study, it is used to 
introduce perturbations in the flow, whose evolution is to be 
studied. For ease of notation, in the following, u 1 and u 2 are 
denoted as u and v, respectively, and x 1 and x 2 will be denoted 
as x and y, respectively. 

Figure 1 
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The geometry under consideration 

H 

l 
To specify the mathematical problem fully both boundary and 

initial conditions have to be specified. The boundary conditions 
used in the present study are: 

u =v  =0  x=O,  L y = O , H  

T = T  h x=O 

T = T  c x = L  

OT 
- -  = 0 y - -  0 ,  H ( 2 )  
by 

The boundary conditions and the geometry suggest a number 
of scales with which to make the equations dimensionless. Obvi- 
ous and appropriate choices are the length scale H, the tempera- 
ture scale T o = T c and the temperature difference AT = T h - T c. 
The boundary conditions do not suggest a velocity scale; a 
possible choice from the parameters in the equations and the 
boundary conditions is the buoyant scale (gfSATH) a/2. These 
choices lead to a set of nondimensionalized equations, governed 

Notation 

a 

A 
Amax 
Ebuoy 
Eshear 
f 
g 
H 
L 
P 
Pr 
R a  

t 
S' 
T 
To 
U 

U i 

thermal diffusivity 
height over width aspect ratio, = H / L  
amplitude of imposed perturbation 
buoyancy production of energy 
shear production of energy 
frequency 
acceleration of gravity 
height of cavity 
width of cavity 
pressure 
Prandtl number, = v / a  
Rayleigh number, =gf3ATH3/(va)  
time 
source term in temperature equation 
temperature 
reference temperature 
horizontal velocity component 
velocity component, i = 1, 2 

U 
X 

Xi 

Y 

vertical velocity component 
coordinate direction between hot and cold walls 
coordinate direction, i = 1,2 
vertical coordinate direction 

Greek 

8ij 
A 
V 
p 

coefficient of thermal expansion 
Kronecker-delta 
difference 
kinematic viscosity 
density 
generic variable 

Subscripts 

cr 
c 
h 

critical value 
quantity related to cold vertical wall 
quantity related to hot vertical wall 
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by only three characteristic numbers: the Rayleigh number Ra = 
g~ATHa/(va), the Prandtl number Pr = v/a and the aspect 
ratio A = H/L.  

Also the additional source term S' needs to be specified. It is 
equal to zero everywhere except in a small region at the base of 
the hot vertical boundary layer: 0 < x / H  < 0.02 and 0 < y / H  < 
0.02. Within this region, three different sources have been em- 
ployed: 

S'(t) = AmaxSin(2"rrft) 

[ x / H  
S'(x,t)=AmaxSin[21r-~.-.-.-~ )sin(2rtft) 

S'(t) = 2A=,x[ran(t) - 0.5] 

(3) 

(4) 

(5) 

Here, Area x denotes the amplitude of the source term and f the 
frequency of the perturbation. In the third source, Equation 5, 
the function ran denotes a random source generator with a 
uniform distribution between 0 and 1. 

Kinetic energy equat ion 

Although the Navier-Stokes Equations 1-5 completely describe 
the mathematical problem, for the present study, it is instructive 
to consider the kinetic energy, for which the conservation equa- 
tion can be derived from the Navier-Stokes equations. To derive 
the equation describing the conservation of fluctuating kinetic 
energy, we first perform the Reynolds decomposition into a 
mean and a fluctuating quantity. For a scalar variable +(x i, t), 
this means: 

qb(xi,t) = ~(xi) + cb'(xi,t) 

,. 1 gt*/2 
with ~(x i) = u m  S-~ l d~(xi,t)dt 

t*  ~ t J - t * / 2  
(6) 

The equation describing the conservation of fluctuating kinetic 
energy, u'iu~/2, can be derived from the momentum equation in 
the Navier-Stokes equations. First, the momentum equation is 
multiplied by u i after which the decomposition is introduced in 
the resulting equation. From this equation, the original momen- 
tum equation multiplied by ~i is subtracted. This results in an 
equation describing the conservation of fluctuating kinetic en- 
ergy, which reads: 
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Here, the first group of terms on the righthand side (denoted by 
I) is a divergence, which can be interpreted as representing 
transport of fluctuating kinetic energy and is zero after integrat- 
ing over the entire cavity. The second group, denoted by II, 
contains terms that are all linear in the fluctuating velocity 
components. Reynolds-averaging of Equation 7 would make the 
terms in this group zero. Group III contains terms which neither 
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by integration in space nor by integration in time can be made 
equal to zero. These terms describe production and dissipation of 
fluctuating kinetic energy. The t e rm --U~U~Ui//C~X j describes the 
production of fluctuating kinetic energy by the shear in the mean 
flow, gf~u'iT'Bi2 describes the production of fluctuating kinetic 
energy by buoyancy forces, and -v(au~/axj) 2 describes the 
viscous dissipation of fluctuating kinetic energy. 

Numerical  method 

The equations are discretized using the finite-volume method in 
which the differential equations are integrated over separate 
volumes into which the domain is divided. Subsequently, a time- 
integration is performed using the Crank-Nicholson method. 
The remaining derivatives are approximated using a second- 
order-centred finite differences. The convective terms are ap- 
proximated using the QUICK scheme (Leonard 1979). In the 
present study, a nonstaggered mesh has been used. To enforce 
continuity, a Poisson pressure correction equation is used. To 
avoid the problem of the well-known grid-scale pressure oscilla- 
tion for a nonstaggered grid, additional elliptic correction terms 
are incorporated in the continuity equation. These additional 
terms have been shown to have a negligible effect on the accu- 
racy of the solution (Armfield 1991, 1994). 

The grid nodes are distributed using a stretched grid. The 
basic grid uses 99 x 99 grid points. These are distributed symmet- 
rically with respect to the cavity half-width and half-height. The 
first gridpoint is located 0.001H in from the walls. Subsequently, 
the mesh expands at a rate of 7.6% up to x = 0.1H, just beyond 
the edge of the boundary layer. Beyond x = 0.1H, the mesh size 
is constant. Grid refinement is performed by subsequently reduc- 
ing the distances between the grid points by an integer factor. 
Because we are interested mainly in the vertical boundary layers 
in the cavity, grid refinement in the x-direction is performed only 
within the vertical boundary layers (i.e., for Ix-Xwa,I < 0.1H); 
whereas, it occurs everywhere in the y-direction. 

F u n d a m e n t a l  a s p e c t s  of  t h e  f l o w  

Basic f low structures 

Figure 2a shows streamlines for the steady flow of water (Pr = 7.5) 
in the square cavity at Ra = 6 x 108. The flow in the cavity is 
dearly dominated by the presence of a large core region in which 
the velocity is almost horizontal. Along the walls, boundary layers 
are formed. These boundary layers are especially pronounced 
along the vertical walls and are similar, but not identical, to those 
along an isolated, heated or cooled, vertical plate as the results 
of Henkes and Hoogendoorn (1993) illustrate. They found that 
characteristic quantities for these boundary layers in the cavity, 
such as the Nusselt number and the maximum of the vertical 
velocity component at half the cavity height, adhere to the same 
scaling with Rayleigh number as do the corresponding quantities 
for the boundary layer along the isolated plate. A characteristic 
of the core region in the cavity is its stable stratification, as is 
clearly evident from Figure 2b, which shows the temperature 
field in the cavity. This stratification exerts a considerable influ- 
ence on the boundary layers along the vertical walls of the cavity, 
as is shown in Figure 2c. This figure shows the profile of the 
vertical velocity in the boundary layer along the hot wall at half 
the cavity height. The presence of a region in which the velocity 
is negative is noticeable. This negative velocity is a direct conse- 
quence of the stratification in the interior of the cavity (Henkes 
and Hoogendoorn). 

If the Rayleigh number in the cavity configuration is in- 
creased to sufficiently large values, the flow will undergo a 
number of bifurcations which result in it becoming time depen- 
dent and ultimately turbulent. One of these bifurcations causes 
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Figure 2 Steady f low in the square cavity; Ra=6  × 108 and Pr=7.5;  (a) streamlines, (b) isotherms; (c) profile of the vertical 
velocity component at half the cavity height 

oscillations which are strongest in the downstream parts of the 
vertical boundary layers (Janssen and Henkes 1995) and for 
which the visualization (Le Qurr6 and Alziary de Roquefort 
1985) shows that they have a travelling wave-like appearance. 
This, together with the well-known result that natural-convection 
boundary layers along isolated heated plates allow wave-like 
disturbances to develop, suggests that the boundary layers in the 
cavity behaves in a similar way and that this ultimately leads to a 
bifurcation of the boundary layer. 

Boundary- layer instabil i t ies 

Many studies have been performed in which the stability proper- 
ties of boundary layers are investigated. Attention has been 
mostly restricted to forced-convection boundary layers (see 
Drazin and Reid 1981). Probably the simplest way to study the 
stability properties of boundary layers numerically is by employ- 
ing linear stability theory and assuming that the boundary layer is 
a parallel flow. This approach allows the stability problem to be 
formulated as a generalized eigenvalue equation, known as the 
Orr-Sommerfeld equation (for forced-convection boundary lay- 
ers). Solving the spatial Orr-Sommerfeld problem, results in the 
determination of stable and unstable waves with a fixed fre- 
quency and a particular (normalized) amplitude distribution 
across the boundary layer and a wavenumber which depend on 
this frequency. Usually, waves are sought which are neutrally 
stable (i.e., neither decay nor grow) and it is then generally 
assumed that the mode which becomes unstable first (i.e., for the 
smallest Rayleigh number) dominates the final disturbance. An 
important characteristic of these calculations is that all quantities 
have the same growth rate. 

Linear stability studies using an eigenvalue approach have 
also been performed for natural-convection boundary layers along 
a vertical plate. Gill and Davey (1969) determined the stability 
characteristics of the one-dimensional (I-D) natural-convection 
boundary layer in an environment that was stably stratified 
similar to the core region in the cavity (Figure 2b). In their 
analysis, however, the temperature of the plate also increases 
with height, contrary to the situation in the cavity. To obtain 
additional results for the boundary layer, eigenvalue calculations 
were performed in the present study using as a base flow the 
similarity solution of the natural-convection boundary layer along 
a hot, isothermal plate in an isothermal environment. The stabil- 
ity equations were discretized using a pseudospectral method 
employing Chebyshev polynomials, and the resulting generalized 
eigenvalue equation was solved. The neutral stability results for 
the most unstable waves (i.e., the waves with the smallest critical 
Rayleigh number) for both configurations are given in Table 1 
for the Prandtl numbers concerned. The frequencies in Table 1 
have been made dimensionless with the time scale 
vl/3(g~3AT) -2/3, following the suggestion of Gebhart and 
Mahajan (1975). This time scale has been chosen because it does 
not contain the position along the plate, and it is, therefore, a 
natural time scale for the boundary layer. Here, AT = 2(T h - T=), 
where T h is the temperature of the plate and T= the temperature 
at infinity. The factor 2 is introduced to make a meaningful 
comparison with the results for the cavity possible [2(T h -T~)  
corresponding to T h -To] .  Note, however that (Ray)or is still 
based on (T h - T=). 

A fundamental assumption in this type of analysis is that of a 
parallel base flow on which the disturbances develop. This as- 
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Table  1 Neutral stability results for the critical waves in a natural-convection boundary layer using an eigenvalue analysis 

Isothermal environment 
(present study) 

Stratified environment 
(Gill and Davey 1969) 

fpl/3 ful/3 

Pr ( gfJAT )2/3 (Ray )cr ( gl3A T )2/3 (Ray )cr 

0.71 0.0188 1.8 × 105 0.0239 1.1 X 108 
2.0 0.0179 1.4 × 105 0.0240 3.6 × 107 
7.5 0.0194 1.2 × 105 - -  - -  

sumption, for natural-convection boundary layers, is true only if 
terms of O(Ra; 1/4) are neglected. If the flow is not assumed to 
be parallel, the situation changes radically (Fasel and 
Konzelmann 1990; Bertolotti et al. 1992). Growth rates now 
depend on the quantity observed and the position in the bound- 
ary layer. Different definitions of the local growth rate vary 
O(Rayl/4). Consequently, it is impossible to define a unique 
critical Rayleigh number at which the boundary layer becomes 
unstable. Either the specific quantity and position on which the 
growth rate is based must be given or approximate ranges must 
be indicated in which growth first occurs. Some ambiguity in this 
latter case is, however, to be expected. 

Convective and absolute instabil it ies 

The stability studies for boundary layers, described in the previ- 
ous section, give conditions under which an imposed perturba- 
tion is first amplified by the boundary layer. The flow is then 
unstable in the sense that it acts as an amplifier for externally 
imposed disturbances. Such a flow is called a convectivety unsta- 
ble flow. Consequently, if the external source of the perturbation 
is removed, the amplitude of the oscillation at any fixed position 
will decrease to zero for sufficiently large time even though the 
amplitude of the disturbance increases while it is being con- 
vected downstream. This behaviour is fundamentally different 
from that which occurs when the boundary layer in the cavity 
bifurcates. In this case, the disturbance in the flow at any fixed 
position is selfsustaining; i.e., the amplitude does not decrease in 
time. The flow acts as a true oscillator and is termed absolutely 
unstable. Normally, flows become convectively unstable first and 
absolutely unstable later (i.e., for larger Rayleigh number in the 
present case). A detailed and rigorous exposition on the concepts 
of convective and absolute instability is given in Huerre and 
Monkewitz (1990) and references therein. 

R e s u l t s  

Calculations have been performed for different combinations of 
Ra, Pr, and A although results here are only presented for the 
flow in the square cavity (A = 1). Three different Prandtl num- 
bers (0.71, 2.0, and 7.5) have been selected which cover the basic 
range of interest. The corresponding Rayleigh numbers are Ra = 
108, 109, and 6 × 108, respectively. These are chosen to be 
somewhat below the critical value at which the flow in the cavity 
undergoes transition from steady to time-dependent flow. For 
Pr = 0.71 and 2.0, the Rayleigh number is, therefore, restricted 
by the occurrence of the corner instability (mentioned in the 
Introduction) which occurs at a lower Rayleigh number than the 
instability in the vertical boundary layers (see Janssen and Henkes 
1995). 

Validity of the imposed-perturbation approach 

Suitability. For the present results to have a general meaning, 
it is necessary for the disturbance to correspond to an eigenmode 

of the boundary layer in the cavity. In this study, the imposed 
perturbation (usually) has a fixed frequency, but the initial ampli- 
tude distribution across the width of the boundary layer will not 
correspond to that of the eigenmode of the boundary layer with 
the same frequency. There will, therefore, be an evolution from 
the imposed distribution of the wave amplitude to the distribu- 
tion corresponding to the eigenmode, and results in the lower 
part of the boundary layer along the hot cavity wall will depend 
on the particular form of the source employed in disturbing the 
flow. Figures 3a and 3b show the distribution of the perturbation 
amplitude in the temperature across the hot vertical boundary 
layer at y = 0.15H and the growth of T'ax with respect to y for 
y > 0.15H using two different sources for Pr = 2, Ra = 109 with 

1.0 

T I 
AT 

0.5 

0.0 
0.(30( 

10 

T~,~(y) 
T~,~(0.15) 

a) 

Eq. (3) 
- - - - -  Eq. (4) 

b) 

\ 

o.I  

Eq. (3) 
- - - - -  Eq. (4) 

.o 0.5 1 .o 

Figure 3 Temperature perturbations in the cavity boundary 
layer using two different sources: (a) Amplitude across the 
boundary layer at y=0 .15H;  (b) T~a x as a function of y 
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Normalized temperature perturbation growth 
T~ax(Y)/T~ax(0.15) for various init ial source ampli tudes 

fvl/3(g~AT) -2/3 = 0.0146. Here Tmax(Y) denotes the maximum 
of the amplitude of the perturbation T' across the width of the 
boundary layer at height y. The sources used are given in 
Equations 3 and 4 and differ, therefore, only in the initial 
distribution of the amplitude across the boundary layer. There is 
dearly an excellent agreement between the two cases, showing 
that at least for y /H> 0.15, the eigenmode for the boundary 
layer has been selected. 

Linearity. Figure 4 shows the growth of T~a x for various initial 
amplitudes Am~ x of the source term (see Equation 3). Again, 
the situation considered is for Pr = 2, Ra = 109 with 
fvl/3(g~AT) -2/3 =0.0146. Clearly, there is a large range of 
amplitudes in which the perturbations are linearly amplified (i.e., 
independent of the initial amplitude) by the flow in the boundary 
layer along the vertical cavity walls. 

Accuracy.  To investigate the accuracy of the present numeri- 
cal method, calculations have been performed for different grids. 
Figure 5 shows the results for the growth of T'ax for Pr = 2 and 
Ra --- 109. Three different grids have been employed with 99 x 99, 
237 X 197 and 237 X 393 grid points. The figure shows that 
approximately 237 × 197 grid points are necessary to obtain 

10 

T~,==(y) 
T',.=(0.15) 

99x99 
- - - - -  237x197 

237x393 

i 

J 
.0 0.5 1.0 

Figure 5 Normalized temperature perturbation growth on 
different grids 

growth rates that are (almost) grid-independent. Furthermore, 
the results on the coarsest grid, although considerably in error in 
the region of very large growth rates, dearly have the same trend 
as the results on the finer grids, showing that the physics is 
captured even on the coarsest grid. Maximum differences be- 
tween the integrated growth rates on the two finest grids are 
approximately 3-4%. For other quantities (e.g., time-averaged 
quantities), these differences are smaller. Therefore, most calcu- 
lations have been performed using the grid with 237 x 197 grid 
points. 

Comparison between plate and cavity 

To identify the frequencies of the most unstable waves in the 
vertical boundary layers of the cavity, calculations were per- 
formed using the random source given in Equation 5. Provided 
the initial amplitude is small enough, the disturbance evolution is 
described by linearized equations (see preceding section) and, 
consequently, all the different frequency modes in the random 
source are decoupled. Spectra were calculated from time series 
obtained at monitor points located at Various height y and at 
x = 0.012H inside the hot boundary layer. It is assumed that the 
dominant frequencies at these monitor points are also the domi- 
nant frequencies at the same height over the entire width of the 
boundary layer. The result for Pr = 0.71 at y = 0.5H is shown in 
Figures 6a and 6b. Figure 6a, in which a logarithmic scale for the 
power spectral density has been used, shows that only frequen- 
cies in a rather narrow range contain energy which differs 
considerably from the noise level, thereby showing the selective 
frequency amplification mechanism originally discovered for the 
vertical plate (Gebhart and Mahajan 1975). Figure 6b shows the 
same result plotted on a linear scale. Clearly, the most strongly 
amplified frequency up to y = 0.5H (i.e., the frequency with the 
strongest integrated growth up to this height) corresponds to 
fvl/3(g~AT) -2/3 = 0.0340. This frequency is dominant over the 
entire range 0.20H <y < 0.65H. Figure 7 shows the power spec- 
trum at y = 0.9H with a dominant frequency fvl/3(g~AT) -2/3 
= 0.0223. This latter frequency is, in fact, in good agreement 
with the value for the naturally occurring instability which is 
O.0230(g~AT)2/3 v- 1/3 (Janssen and Henkes 1995) at Ra = 3 × 
108 , again, confirming the suitability of the imposed-perturbation 
approach for analyzing the stability properties of the vertical 
boundary layers in the cavity. 

An obvious observation from the spectra for Pr = 0.71 at 
y = 0.5H and y = 0.9H is the occurrence of a shift in the most 
strongly amplified frequency between the two heights in the 
cavity. This shift, together with the good agreement between the 
dominant frequency at y = 0.9H and the frequency of the natu- 
rally occurring instability clearly shows that the naturally occur- 
ring instability in the cavity does not correspond to the first 
mode which becomes unstable. Similar calculations, using a 
random source to introduce the perturbations in the flow were 
also performed for the other configurations. For all Prandtl 
numbers, it was found that there was a similar shift in the 
dominant frequencies between various heights of the cavity. 
Basic results are given in Table 2. Because of the observed shift 
in frequencies, the dominant frequency (i.e., the frequency with 
the largest integrated growth rate up to that height) is shown for 
both y = 0.5H and y = 0.9H. If these frequencies are compared 
with the frequencies calculated for the plate as tabulated in 
Table 1, then it is clear that there is no direct quantitative 
correspondence. Nevertheless, the similarity between the two 
configurations is obvious from the closeness of the values of the 
dominant frequencies of the plate and cavity configurations. 

Apart from the frequencies of these dominant waves, also the 
approximate critical Rayleigh numbers of the waves are given in 
Table 2. These critical Rayleigh numbers are local Rayleigh 
numbers; i.e., they are based on the local height y and the local 
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temperature difference, at that same height y, between the hot 
wall and the core region at half the cavity width. The Rayleigh 
numbers have been estimated by performing new calculations 
using the single-frequency perturbation as given in Equation 3. 
Because of the ambiguity in defining growth rates (see the 
Boundary-layer instabilities section) and because of the resulting 
ambiguity in finding the critical Rayleigh number, a range is 
indicated in Table 2. This range is estimated based on growth 

i rates obtained from both / 'ax and V'ax. Here, Urea x denotes the 
maximum of the amplitude of the perturbation v' across the 
boundary layer. As the results in the table show, the lowest 
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critical Rayleigh numbers are approximately 2 x 105 for the 
frequencies that are dominant at y = 0.5H. The highest critical 
Rayleigh number is observed to be approximately 2 x 107 for 
Pr = 2 for the mode that becomes dominant at the extreme 
downstream end of the vertical boundary layers. 

Because cavity flows are different flows for different cavity 
Rayleigh numbers (i.e., there is no mathematical similarity), it is 
to be expected that the calculated values for the local critical 
Rayleigh numbers and frequencies will be different for other 
cavity Rayleigh numbers. Hence, it was necessary to perform 
additional calculations to check the magnitude of this influence 
of the cavity Rayleigh number. Calculations were performed for 
Pr = 7.5 for cavity Rayleigh numbers 10 s and 6 x 107 (as com- 
pared to the original calculations for 6 x 108). Calculated local 
critical Rayleigh numbers for T'ax were found to be 4 x 105 and 
5 x 105, respectively. Hence, a tenfold increase in the cavity 
Rayleigh number results only in an approximately twofold de- 
crease in the observed local critical Rayleigh numbers. This, 
together with the inevitable ambiguity in the determination of 
the local critical Rayleigh numbers because of the nonparallel- 
lism of the cavity boundary layers (an ambiguity which is actually 
larger than the one introduced by this variation in the cavity 
Rayleigh number) shows that it is permissible to take the values 
for the particular configurations considered in Table 2 as repre- 
sentative for the entire range of cavity Rayleigh numbers of 
interest. 

The critical Rayleigh numbers given are those estimated for 
modes that are dominant (i.e., have a largest integrated growth) 
at y = 0.5H and y = 0.9H. These modes are not necessarily the 
modes that become unstable first in the cavity. However, check- 
ing the results for the calculations with random sources shows 
that the first amplification for these frequencies starts at approx- 
imately the same positions as for the waves given in Table 2. In 
view of the small differences in the observed critical Rayleigh 

T a b l e  2 Resul ts  for  the  m o s t  u n s t a b l e  w a v e s  in the vertical boundary layers of the cavity at y=O.5H and y =  O .9H  

y = 0 . 5 H  y = 0 . 9 H  

Pr 0.71 2.0 7.5 0.71 2.0 7.5 
fvl/3 

0.0340 0.0388 0.0233 0.0223 0.0146 0.0256 
(gp~T)  ~ 

(Ray)cr X 1 0 -  s 2-8  1-7 3 -4  10-40 100-300 10-15 
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numbers using this approach and in view of the ambiguity of the 
definition of the critical Rayleigh number for nonparallel flows, 
we, therefore, simply take the lowest critical Rayleigh numbers in 
Table 2 as the critical Rayleigh numbers at which the first 
unstable modes appear. If these values are compared to those of 
the plate configuration in Table 1, it is clear that there is a 
reasonable agreement with the values obtained for the boundary 
layer in an isothermal environment but a poor agreement with 
those for the boundary layer in a stratified environment. This 
measure of agreement between the critical Rayleigh numbers for 
the isolated plate and the cavity configuration also clarifies the 
previously found discrepancies (see e.g., Le Qu~r6 1990; Janssen 
and Henkes 1995). In the earlier investigations, the critical 
Rayleigh numbers for the convective instability in the boundary 
layer along the plate was compared to that of the absolute 
instability in the cavity. This results in large discrepancies; 
whereas, the present calculations show conclusively that there is, 
in fact, a convectively unstable region in the cavity boundary 
layers for local Rayleigh numbers of the order of those for the 
isolated plate. 

Instabi l i ty mechanisms 

Janssen and Henkes (1995) found, after an extensive set of 
calculations, that there was for Pr > 2.5 an immediate transition 
from the steady to a time-dependent flow regime with continuous 
(i.e., broadband) power spectra. This was in marked contrast to 
the results for Pr < 2 for which the bifurcation in the vertical 
boundary layers of the cavity introduces a single frequency in the 
flow. Janssen and Henkes (1995), therefore, concluded that there 
was a change in the nature of the instability occurring in the 
vertical boundary layers when the Prandtl number is increased. 

As first described by Nachtsheim (1963), there are--at  the 
least--two possible mechanisms which may be responsible for 
the amplification of perturbations in a natural-convection flow. 
This can be seen mathematically from the terms in group III of 
Equation 7, which describe the production and dissipation of 
fluctuating kinetic energy of the perturbation. The first term of 
group III describes production of fluctuating kinetic energy by 
shear of the mean flow; whereas, the third term in group III 
describes the production of fluctuating kinetic energy by buoy- 
ancy. Gill and Davey (1969) found for the critical waves along the 
plate in a stratified environment that with increasing Prandtl 
number, the shear-driven mechanism becomes progressively 
weaker and the buoyancy-driven mechanism more important. 

To the best of our knowledge, there is as yet little understand- 
ing of the precise physical mechanisms responsible for the ob- 
served wave amplification in boundary layers. As far as the 
shear-driven mechanism is concerned, it is known that viscosity 
plays an important and rather subtle role in this, because it is 
found that the solution of the linearized, parallel stability equa- 
tions is more unstable if viscosity is included as compared to 
when it is excluded (Schlichting 1968). This apparent role of 
diffusive effects in causing the instability to occur is presumably 
also the reason for the role of the Prandtl number as observed by 
Gill and Davey (1969). For increasing Prandtl number, the rela- 
tive influence of viscosity and thermal diffusivity changes, thereby 
causing a change in the driving mechanism for the disturbance 
amplification. 

In view of the observed change in the nature of the 
boundary-layer instability in the differentially heated cavity (see 
Janssen and Henkes 1995) for the same range of Prandtl num- 
bers as studied by Gill and Davey (1969), it appears likely that 
this change is related to an increased influence of the buoyancy- 
driven instability mode. To study this point more closely, the 
equation describing the conservation of fluctuating kinetic en- 
ergy, Equation 7, was evaluated for all cases given in Table 2. In 
all instances, the total production of fluctuating kinetic energy 

Table 3 Energy-contribution of the shear- and 
buoyancy-production terms to the 
total production of fluctuating kinetic energy; 
Eshea r and Ebuoy denote 
shear- and buoyancy-production, respectively 

Pr Eshea r (%) Ebuov (%) 

0.71 97.6 2.4 
2.0 71.3 28.7 
7.5 -- 9.3 100 

and the respective contributions from the shear- and buoyancy- 
production terms were calculated for the boundary layer along 
the hot wall. The region with x < 0.1H and y > 0.02H was 
considered (y > 0.02H was taken to ensure that the region in 
which the additional sources are introduced was not considered, 
see Equation 5). The results for the frequencies that are domi- 
nant at y = 0.9H are given in Table 3. As is readily apparent 
from Table 3, there is, indeed, a shift from the instability being 
totally shear-driven (Pr = 0.71), to it being dominantly shear- 
driven with, however, a significant contribution of the buoyancy- 
production term (Pr = 2) to an instability which is totally buoy- 
ancy-driven (Pr = 7.5). Because the results of Janssen and Henkes 
(1995) indicate that there isn't a single frequency in the flow for 
Pr = 7.5 after the bifurcation but a range of frequencies, this 
same calculation was repeated for all frequencies in the range 
between O.0226(g~AT)2/3v - 1/3 and O.0312(g~AT)2/3v- t/3 with 
a step of O.O0215(gf~AT)2/3v -1/3. In all instances, the 
buoyancy-production was dominant. Because the instability 
modes (given in Table 3) are the ones which, for somewhat larger 
Rayleigh numbers, result in the bifurcation of the boundary layer 
in the differentially heated cavity, it is reasonable to extrapolate 
this result to the naturally occurring instability and, hence, to 
assume that the shear-driven instability results in a stronger 
frequency-filtering effect and consequently in a single frequency 
in the flow after the bifurcation. 

Additional calculations for the frequencies that are dominant 
at half the cavity height show for Pr = 0.71 and 7.5 the same 
trends as in Table 3: for Pr = 0.71, the shear-driven mechanism 
and for Pr = 7.5 the buoyancy-driven mechanism is dominant. 
For these (extreme) Prandtl numbers only one mechanism oper- 
ates. However, for Pr = 2, the dominant mode at y = 0.5H is 
predominantly buoyancy-driven contrary to the result for y--- 
0.9H. This shows (as does in fact the result given in Table 3) that 
for Pr = 2 both instability mechanisms are active and influence 
disturbance growth: This, again, confirms that there is a gradual 
shift in the nature of the instability mechanism with increasing 
Prandtl number. 

Eigenfunct ions and cr i t ical layers 

In the theoretical study of instabilities in boundary layers, an 
important position is taken by the critical layer, because this is 
usually the location where the amplitudes are largest. The critical 
layer is defined as the position where the phase velocity of the 
eigenmode is equal to the velocity of the base flow. In forced- 
convection boundary layers, there is only one critical layer, and 
this constitutes a fundamental difference with natural convection 
boundary layers for which there are two critical layers: one inside 
and one outside the position of maximum vertical velocity. 

Figure 8 shows the amplitude distributions of v' and T' at 
y=0.75H for Pr=0.71, Ra=108 and fvl/3(gf~AT) -2/3= 
0.0223. Also shown in the figure is the profile of the steady, 
vertical velocity component v. The most outstanding feature of 
these profiles is the presence of three local maxima in the 
amplitude distribution for v', the inner one of which is located 
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between the wall and the position of maximum vertical velocity. 
In Figure 8, the outer maximum is larger than the inner maxi- 
mum. This is true for all y < 0.8H. In fact, for y _< 0.6H, there is 
no inner maximum in the v'-amplitude (because the amplifica- 
tion is very weak for these heights). However, for y > 0.8H the 
inner maximum becomes the largest one. The presence of this 
inner maximum in the v'-amplitude is the main difference be- 
tween the results for Pr = 0.71 and for Pr = 7.5, as Figure 9 
shows, in which the same results for Pr = 7.5 are depicted as in 
Figure 8 for Pr = 0.71. No inner maximum of the v'-amplitude 
was found for Pr = 7.5 at any height. In view of the difference in 
the energy sources for the modes at the various Prandtl numbers, 
it is clear that the difference in the amplitude profiles is related 
to the instability being either shear- or buoyancy-driven. This is 
confirmed by the results for the two different unstable modes at 
Pr = 2: the dominantly shear-driven mode had an inner maxi- 
mum in v'; whereas, the buoyancy-driven mode did not. 

Similar distributions for the amplitudes of the v'-perturbation 
(i.e., with an inner maximum for Pr = 0.7 and without it for 
Pr = 7) were found by Knowles and Gebhart (1968), Gill. and 
Davey (1969), and Jaluria and Gebhart (1974) in their eigenvalue 
stability studies for natural convection boundary layers along a 
plate under various conditions (isothermal and constant-flux 
walls, stratified and isothermal environments). In all these inves- 
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tigations, the results were for neutral waves only. It seems 
reasonable, however, to extrapolate these results to unstable 
waves (in fact, we checked this to be the case for the boundary 
layer along the plate in an isothermal environment using our 
eigenvalue code). The overall agreement between the results for 
the plate (under the various conditions studied) and the cavity 
shows the general applicability of the physics of the instability 
mechanisms as determined here. 

Conclusions 

The present study investigates the stability properties of the 
vertical boundary layers of a cavity that is differentially heated 
over two opposing vertical walls. The horizontal walls are adia- 
batic. The stability properties were determined by introducing 
controlled perturbations at the base of the hot boundary layer. 
These perturbations developed into travelling waves which are 
either amplified or damped when travelling along the boundary 
layer. Perturbation sources with a monoperiodic and with a 
random time-dependence have been used. 

There are two important advantages of the present approach 
compared to simply solving the Navier-Stokes equations for 
successively larger Rayleigh numbers and studying the naturally 
occurring bifurcation of the vertical boundary layers (as was 
previously done for this configuration; see e.g., Le Qurr6 and 
Alziary de Roquefort 1985; Paolucci and Chenoweth 1989; 
Janssen and Henkes 1995). Firstly, by perturbing a steady base 
flow the, in this case undesired, influence of the comer instability 
(Janssen and Henkes) is avoided, making it possible to investi- 
gate the stability properties of the boundary layers in the cavity 
more directly. Secondly, it is possible in the present approach to 
calculate convectively unstable waves and to determine their 
properties. In combination with the previously used method of 
calculating the naturally occurring bifurcation (i.e., the absolutely 
unstable waves), the present approach makes it possible to obtain 
a complete picture of the disturbance growth mechanisms in the 
boundary layer of the cavity. 

It was checked that there was a very rapid development of the 
unstable waves towards an eigenmode of the vertical boundary 
layers, indicating the independence of the results with respect to 
the particular form of the particular disturbances that are intro- 
duced into the flow. By using sufficiently small initial perturba- 
tions, the results didn't depend on the magnitude of these initial 
perturbations. Thus, the present results describe the linear, un- 
stable eigenmodes of the boundary layer in the cavity. 

The present calculations show that the (approximate) critical 
Rayleigh numbers for the occurrence of convectively unstable 
modes in the cavity configuration are in reasonable agreement 
with those for the natural-convection boundary layer along a 
plate in an isothermal environment. The calculations also show 
the large difference (approximately 2-3 orders of magnitude) in 
Rayleigh numbers between the first occurrence of (convectively) 
unstable modes and the (absolutely unstable) bifurcation. Fur- 
thermore, it is clear that the unstable modes which ultimately 
result in the bifurcation of the boundary layer, are not the modes 
which become unstable first. These results explain why the 
previously performed comparisons between the cavity and plate 
configurations (e.g., Le Qurr6 1990; Janssen and Henkes 1995) 
gave large discrepancies. Previously, the absolute instability in 
the cavity was compared to the convective instability along the 
plate. Comparing the convectively unstable region in the cavity to 
the plate, results in a much better agreement. 

An important difference between the present results for the 
smaller Pr-number values (0.71 and 2) and the larger Pr-value 
(7.5) is in the energy source for the unstable waves. For Pr _< 2, 
the unstable wave which ultimately leads to the bifurcation of the 
boundary layer in the cavity, is predominantly shear-driven; 
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whereas, for Pr = 7.5, it is buoyancy.driven. Because the results 
previously obtained for the naturally occurring bifurcation in the 
cavity flow (Janssen and Henkes 1995) show a monoperiodic 
oscillation in the flow after the bifurcation for the smaller 
Prandtl  numbers  and a broadband power spectrum for the larger 
Prandtl  numbers,  the present study suggests strongly that  this 
difference is caused by the change in the energy source for the 
unstable waves. 

Although a quantitative comparison between the plate and 
the steady-state cavity flow shows the results to be not identical, 
the agreement in the qualitative appearances of the amplitude 
distributions for the boundary layer in the differentially heated 
cavity with those found for neutral  modes along the isolated 
plate (Knowles and Gebhar t  1968; Gill and Davey 1969; Jaluria 
and Gebhar t  1974) together with the shift in the main energy 
source for increasing Prandtl  number  in both configurations 
shows the close physical similarity between the configurations. It 
also shows that the physics of the unstable waves as presented in 
this paper are of a quite general nature. 
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